Knowledge of WiF

1.Internet of Things (IOT)

The Internet of Things (IoT) is the network of physical objects or “things” embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data.[1] The Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure,[2] creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit;[3][4][5][6][7][8] when IoT is augmented with sensors and actuators, the technology becomes an instance of the more general class of cyber-physical systems, which also encompasses technologies such as smart grids, smart homes, intelligent transportation and smart cities. Each thing is uniquely identifiable through its embedded computing system but is able to interoperate within the existing Internet infrastructure. Experts estimate that the IoT will consist of almost 50 billion objects by 2020.[9]

  1. IEEE 802.11ac

IEEE 802.11ac is a wireless networking standard in the 802.11 family (which is marketed under the brand name Wi-Fi), developed in the IEEE Standards Association process,[1] providing high-throughput wireless local area networks (WLANs) on the 5 GHz band.[1] The standard was developed from 2011 through 2013 and approved in January 2014.[1][2]

This specification has expected multi-station WLAN throughput of at least 1 gigabit per second and a single link throughput of at least 500 megabits per second (500 Mbit/s). This is accomplished by extending the air interface concepts embraced by 802.11n: wider RF bandwidth (up to 160 MHz), more MIMO spatial streams (up to eight), downlink multi-user MIMO (up to four clients), and high-density modulation (up to 256-QAM).[3][4]

  1. IEEE 802.11n

 “11n” redirects here. For the airport in Connecticut with the FAA code 11N, see Candlelight Farms Airport.

IEEE 802.11n-2009, commonly shortened to 802.11n, is a wireless networking standard that uses multiple antennas to increase data rates. It is an amendment to the IEEE 802.11-2007 wireless networking standard. Its purpose is to improve network throughput over the two previous standards—802.11a and 802.11g—with a significant increase in the maximum net data rate from 54 Mbit/s to 600 Mbit/s (slightly higher gross bit rate including for example error-correction codes, and slightly lower maximum throughput) with the use of four spatial streams at a channel width of 40 MHz.[1][2] 802.11n standardized support for multiple-input multiple-output, frame aggregation, and security improvements, among other features. It can be used in the 2.4 GHz or 5 GHz frequency bands.

802.11 is a set of IEEE standards that govern wireless networking transmission methods. They are commonly used today in their 802.11a, 802.11b, 802.11g, 802.11n, and 802.11ac versions to provide wireless connectivity in homes and businesses. Development of 802.11n began in 2002, seven years before publication. The 802.11n protocol is now Clause 20 of the published IEEE 802.11-2012 standard.